

Using design principles to design, implement and evaluate ICT-enabled pedagogical practices

Foo Seau Yoon, Cindy Ong, Tan Xiao Ting & Chia Pei Xian Educational Technology Division

Builds on teachers' ideas to transform learning with technology

An innovation programme which serves as a catalyst to transform ideas into classroom practices & builds synergy among schools, MOE, researchers and industry

Provides strong support to develop ideas into practice and design prototypes for spreading in the wider system

http://edulab.moe.edu.sg/edulab-programmes

Translates research into classroom practice

- Focus on the flow of content or student engagement?
- Provide instructions or diagnose learners' possible confusion?
- Provide information or enable students' exploration of the phenomena?
- Seek predefined answers from students or encourage negotiation of ideas?
- Engage learners in pre-defined activities or enable them to design their own artefacts?

How can eduLab learning designers document our design knowledge with project teachers in terms of our successes & failures in developing ICT-enriched pedagogical practices?

Design principles mediate between learning theory and the design of learning. When based on the learning mechanisms embodied in the design of classroom activities, participations structures, and social surround, design principles provide a framework for understanding how and why things work in the classroom. They make explicit the design considerations that are critical for iteratively analysing and optimising the design and implementation of the ICT-based pedagogical practices to improve student learning.

Dr Manu Kapur eduLab Project Consultant Professor of Psychological Studies The Hong Kong Institute of Education

Presentation Overview

What are design principles?

Why use DPs?

How to use DPs?

What if I want to generate my own DPs?

What are design principles?

Explicate **central** features of pedagogical approach

Highlight what works

What are design principles?

Emerge from previous research & inform future design activities

Based on evidence

What are design principles?

Bridge theories & pragmatic aspects of learning

Guide decision-making

Why use design principles?

Provides an instructional **structure** that can be operationalised in a **variety** of forms

Guard against chasing of fads & not lose sight of what is important

How to

use design principles?

THE THREE LAYERS OF DESIGN PRINCIPLES

Activities for participants

What are we doing?

Participation Structures to engage in the activities

How are we doing it?

Social Surround to frame the context

Why are we doing it?

DPs can potentially change the way we think about the lesson & how we should be planning or designing our lessons Makes us think about the disciplinary & social norms, which we don't focus a lot in our current practice

How to

use design principles?

Design Tool: Specify critical design variables to test and optimise the

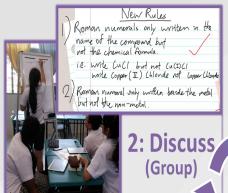
design of the practice

Analytical & Evaluate and reflect on the aspects of the design that

Reflection Tool: are working well and those to be improved

Research Tool: Specify critical variables that require measures to be

created for assessing the effectiveness of the design



Learning Chemical Formulae & Names

Through Discovery-Learning

wRiteFormula in Action

Increase Difficulty

Teaching mode is ON. Mastery level 6 to 6.

Set Teaching Mode: On ▼

Mastery Level from 12 ▼ to 13 ▼

Set Teaching Mode

Discovery-Learning Approach (Wirtz et al., 2006)

2015 WRITEFORMULA (WF) DESIGN PRINCIPLES

ACTIVITY: HOW TO DESIGN WF TASKS?

A1: PRIOR KNOWLEDGE

Activate and utilise prior knowledge of the periodic table and atomic structure throughout the lesson

A2: PURPOSE OF NOMENCLATURE

Establish the need for nomenclature rules to facilitate communication and unambiguous identification of chemical species

A3: COMPARISON AND DEDUCTION

Compare and contrast student-generated examples of ionic compound nomenclature to deduce categories of ions and compounds, and nomenclature conventions

PARTICIPATION: HOW TO ENGAGE STUDENTS USING WF?

P1: INVOLVE EVERYONE

Ensure that all students can participate actively

E.g. ensure that all students have adequate access to the game; choose tools that enable whole class participation; use student-generated information in discussions

P2: COLLECTIVE CONSTRUCTION

Create opportunities for students to collectively construct a common understanding E.g. scaffold class discussions (use thinking routines); demonstrate how to negotiate differences; hove students present, explain and test hypotheses governing the conventions in ionic compound nomenclature

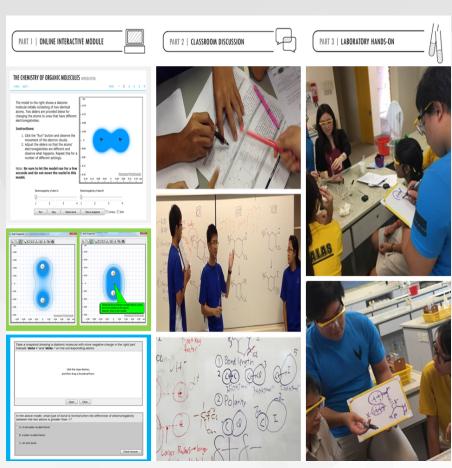
SOCIAL SURROUND: HOW TO CREATE A CONDUCIVE WF ENVIRONMENT?

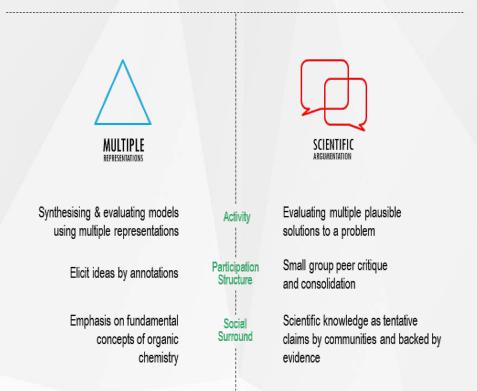
S1: SCIENTIFIC VALUES, CULTURE AND DISPOSITION

Encourage demonstration of scientific values, culture and disposition E.g. explicitly communicate and reinforce expectations for behaviour and attitudes like being observant, analysing and looking for patterns, communicating clearly and concisely, using information responsibly

S2: ENCOURAGE MISTAKES

Encourage students to make and learn from mistakes
E.g. explicitly communicate and reinforce expectations for behaviour and attitudes like
listening respectfully to others, being persistent, resourcefulness

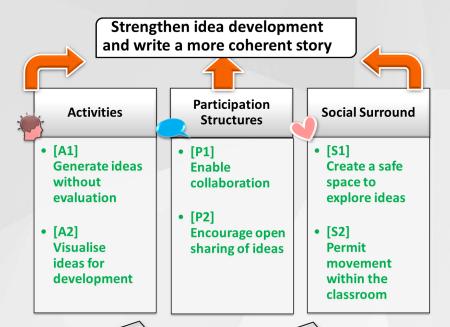




Learning Organic Chemistry

Through Multiple Representations & Scientific Argumentation

DESIGN PRINCIPLES



Reflective Storytelling Using Role Play & Apps

1. [A2] Tuning in through visuals

2. [A1, P1] Working in groups to brainstorm

- 3. [S1, 2] Role-playing of shortlisted ideas
- 4. [A2] Storyboarding through capturing & sequencing key scenes of story

5. [A2] Reviewing for logical links in story

Improving Sports Techniques Through Video Analysis & Peer Feedback

Activities

- Make visible the sports technique as a structured sequence of steps
- Ensure repeated and mindful enactment of the sports technique based on video analysis and feedback

Participation Structures

- Enable students to learn from each other
- Scaffold the processes of reflection and giving constructive peer feedback

Social Surround

- Create a safe space to allow learners to fail, make mistakes and keep trying
- Focus on improving the sports technique rather than measuring the performance

Teacher demonstrates technique & how to give feedback with video analysis app & checklist Students practise in pairs the technique & give constructive feedback based on captured video & checklist

Teacher debriefs & consolidates learning with students

How to

use design principles?

[Please refer to Handout 1]

What if

I want to generate my own DPs?

Contact Us!

I want to generate my own DPs?

If you would like to find out about our work with design principles, or in need of lesson design resources:

Contact us

Cindy Ong

Foo Seau Yoon

ong_choon_cheng@moe.gov.sg

foo_seau_yoon@moe.gov.sg

Join our eduLab communities

- ICT in English Language
- ICT in Mathematics
- ICT in Science

- Digital Game-Based Learning
- Mobilised Learning
- Video-based Learning

http://ictconnection.moe.edu.sg/professional-learning/learning-communities

References

Herrington, J., & Reeves, T.C. (2011). Using design principles to improve pedagogical practice and promote student engagement. In G. Williams, P. Statham, N. Brown, & B. Cleland (Eds.), *Changing Demands, Changing Directions. Proceedings ascilite Hobart 2011* (pp. 594-601). Hobart: Ascilite.

Kapur, M. & Bielaczyc, K. (2012). Designing for Productive Failure. *The Journal of the Learning Sciences*, 21, 45-83.

Ministry of Education of Singapore. (2016) i-In-Practice 4.

Paavola, S. et. al. (2011). The roles and uses of design principles for developing the trialogical approach on learning. *Research in Learning Technology*, 19 (3), 233-246.

